COST ESTIMATE CLASSIFICATION SYSTEM –
AS APPLIED IN ENGINEERING, PROCUREMENT, AND CONSTRUCTION
FOR THE PROCESS INDUSTRIES

TCM Framework: 7.3 – Cost Estimating and Budgeting

Rev. March 1, 2016

Note: As AACE International Recommended Practices evolve over time, please refer to www.aacei.org for the latest revisions.

Contributors:

Disclaimer: The opinions expressed by the authors and contributors to this recommended practice are their own and do not necessarily reflect those of their employers, unless otherwise stated.

(March 1, 2016 Revision):
Larry R. Dysert, CCP CEP DRMP (Author)
Laurie S. Bowman, CCP DRMP EVP PSP
Peter R. Bredehoeft, Jr. CEP
Dan Melamed, CCP EVP
Todd W. Pickett, CCP CEP
Richard C. Plumery, EVP

(November 29, 2011 Revision):
Peter Christensen, CCE (Author)
Larry R. Dysert, CCC CEP (Author)
Jennifer Bates, CCE
Jeffery J. Borowicz, CCE CEP PSP
Peter R. Bredehoeft, Jr. CEP
Robert B. Brown, PE
Dorothy J. Burton
Robert C. Creese, PE CCE
John K. Hollmann, PE CCE CEP
Kenneth K. Humphreys, PE CCE
Donald F. McDonald, Jr. PE CCE PSP
C. Arthur Miller
Todd W. Pickett, CCC CEP
Bernard A. Pietlock, CCC CEP
Wesley R. Querns, CCE
Don L. Short, II CEP
H. Lance Stephenson, CCC
James D. Whiteside, II PE
PURPOSE

As a recommended practice of AACE International, the Cost Estimate Classification System provides guidelines for applying the general principles of estimate classification to project cost estimates (i.e., cost estimates that are used to evaluate, approve, and/or fund projects). The Cost Estimate Classification System maps the phases and stages of project cost estimating together with a generic project scope definition maturity and quality matrix, which can be applied across a wide variety of process industries.

This addendum to the generic recommended practice (17R-97) provides guidelines for applying the principles of estimate classification specifically to project estimates for engineering, procurement, and construction (EPC) work for the process industries. This addendum supplements the generic recommended practice by providing:
- A section that further defines classification concepts as they apply to the process industries.
- A chart that maps the extent and maturity of estimate input information (project definition deliverables) against the class of estimate.

As with the generic recommended practice, the intent of this addendum is to improve communications among all of the stakeholders involved with preparing, evaluating, and using project cost estimates specifically for the process industries.

The overall purpose of this recommended practice is to provide the process industry with a project definition deliverable maturity matrix that is not provided in 17R-97. It also provides an approximate representation of the relationship of specific design input data and design deliverable maturity to the estimate accuracy and methodology used to produce the cost estimate. The estimate accuracy range is driven by many other variables and risks, so the maturity and quality of the scope definition available at the time of the estimate is not the sole determinate of accuracy; risk analysis is required for that purpose.

This document is intended to provide a guideline, not a standard. It is understood that each enterprise may have its own project and estimating processes and terminology, and may classify estimates in particular ways. This guideline provides a generic and generally acceptable classification system for process industries that can be used as a basis to compare against. This addendum should allow each user to better assess, define, and communicate their own processes and standards in the light of generally-accepted cost engineering practice.

INTRODUCTION

For the purposes of this addendum, the term “process industries” is assumed to include firms involved with the manufacturing and production of chemicals, petrochemicals, and hydrocarbon processing. The common thread among these industries (for the purpose of estimate classification) is their reliance on process flow diagrams (PFDs) and piping and instrument diagrams (P&IDs) as primary scope defining documents. These documents are key deliverables in determining the degree of project definition, and thus the extent and maturity of estimate input information.

Estimates for process facilities center on mechanical and chemical process equipment, and they have significant amounts of piping, instrumentation, and process controls involved. As such, this addendum may apply to portions of other industries, such as pharmaceutical, utility, water treatment, metallurgical, converting, and similar industries.
This addendum specifically does not address cost estimate classification in non-process industries such as commercial building construction, environmental remediation, transportation infrastructure, hydropower, “dry” processes such as assembly and manufacturing, “soft asset” production such as software development, and similar industries. It also does not specifically address estimates for the exploration, production, or transportation of mining or hydrocarbon materials, although it may apply to some of the intermediate processing steps in these systems.

The cost estimates covered by this addendum are for engineering, procurement, and construction (EPC) work only. It does not cover estimates for the products manufactured by the process facilities, or for research and development work in support of the process industries. This guideline does not cover the significant building construction that may be a part of process plants.

This guideline reflects generally-accepted cost engineering practices. This RP was based upon the practices of a wide range of companies in the process industries from around the world, as well as published references and standards. Company and public standards were solicited and reviewed, and the practices were found to have significant commonalities. These classifications are also supported by empirical process industry research of systemic risks and their correlation with cost growth and schedule slip \[^8\].

COST ESTIMATE CLASSIFICATION MATRIX FOR THE PROCESS INDUSTRIES

A purpose of cost estimate classification is to align the estimating process with project stage-gate scope development and decision making processes.

Table 1 provides a summary of the characteristics of the five estimate classes. The maturity level of project definition is the sole determining (i.e., primary) characteristic of class. In Table 1, the maturity is roughly indicated by a percentage of complete definition; however, it is the maturity of the defining deliverables that is the determinant, not the percent. The specific deliverables, and their maturity or status are provided in Table 3. The other characteristics are secondary and are generally correlated with the maturity level of project definition deliverables, as discussed in the generic RP \[^2\]. The post sanction classes (Class 1 and 2) are only indirectly covered where new funding is indicated. Again, the characteristics are typical and may vary depending on the circumstances.
<table>
<thead>
<tr>
<th>ESTIMATE CLASS</th>
<th>MATURITY LEVEL OF PROJECT DEFINITION DELIVERABLES Expressed as % of complete definition</th>
<th>END USAGE Typical purpose of estimate</th>
<th>METHODOLOGY Typical estimating method</th>
<th>EXPECTED ACCURACY RANGE Typical variation in low and high ranges</th>
</tr>
</thead>
</table>
| Class 5 | 0% to 2% | Concept screening | Capacity factored, parametric models, judgment, or analogy | L: -20% to -50%
H: +30% to +100% |
| Class 4 | 1% to 15% | Study or feasibility | Equipment factored or parametric models | L: -15% to -30%
H: +20% to +50% |
| Class 3 | 10% to 40% | Budget authorization or control | Semi-detailed unit costs with assembly level line items | L: -10% to -20%
H: +10% to +30% |
| Class 2 | 30% to 75% | Control or bid/tender | Detailed unit cost with forced detailed take-off | L: -5% to -15%
H: +5% to +20% |
| Class 1 | 65% to 100% | Check estimate or bid/tender | Detailed unit cost with detailed take-off | L: -3% to -10%
H: +3% to +15% |

Table 1 – Cost Estimate Classification Matrix for Process Industries

This matrix and guideline outline an estimate classification system that is specific to the process industries. Refer to the generic estimate classification Rp[^1] for a general matrix that is non-industry specific, or to other addendums for guidelines that will provide more detailed information for application in other specific industries. These will provide additional information, particularly the project definition deliverable maturity matrix which determines the class in those particular industries.

Table 1 illustrates typical ranges of accuracy ranges that are associated with the process industries. The +/- value represents typical percentage variation of actual costs from the cost estimate after application of contingency (typically to achieve a 50% probability of project overrun versus underrun) for given scope. Depending on the technical and project deliverables (and other variables) and risks associated with each estimate, the accuracy range for any particular estimate is expected to fall into the ranges identified (although extreme risks can lead to wider ranges).

In addition to the degree of project definition, estimate accuracy is also driven by other systemic risks such as:

- Level of non-familiar technology in the project.
- Complexity of the project.
- Quality of reference cost estimating data.
- Quality of assumptions used in preparing the estimate.
- Experience and skill level of the estimator.
- Estimating techniques employed.
- Time and level of effort budgeted to prepare the estimate.
- Unique/remote nature of project locations and the lack of reference data for these locations.
- The accuracy of the composition of the input and output process streams.

Systemic risks such as these are often the primary driver of accuracy, especially during the early stages of project definition. As project definition progresses, project-specific risks (e.g. risk events) become more prevalent and also drive the accuracy range[^9]. Another concern in estimates is potential pressure for a predetermined value that may
result in a biased estimate. The goal should be to always have an unbiased and objective estimate. The stated estimate ranges are dependent on this premise and a realistic view of the project.

Failure to appropriately address systemic risks (e.g. technical complexity) during risk analysis impacts the resulting probability distribution of the estimate costs, and therefore the interpretation of estimate accuracy.

Another way to look at the variability associated with estimate accuracy ranges is shown in Figure 1. Depending upon the technical complexity of the project, the availability of appropriate cost reference information, the degree of project definition, and the inclusion of appropriate contingency determination, a typical Class 5 estimate for a process industry project may have an accuracy range as broad as -50% to +100%, or as narrow as -20% to +30%.

Figure 1 also illustrates that the estimating accuracy ranges overlap the estimate classes. There are cases where a Class 5 estimate for a particular project may be as accurate as a Class 3 estimate for a different project. For example, similar accuracy ranges may occur if the Class 5 estimate of one project that is based on a repeat project with good cost history and data and, whereas the Class 3 estimate for another is for a project involving new technology. It is for this reason that Table 1 provides ranges of accuracy range values. This allows application of the specific circumstances inherent in a project, and an industry sector, to provide realistic estimate class accuracy range percentages. While a target range may be expected of a particular estimate, the accuracy range is determined through risk analysis of the specific project and is never pre-determined. AACE has recommended practices that address contingency determination and risk analysis methods.

If contingency has been addressed appropriately, approximately 80% of projects should fall within the ranges shown in Figure 1. However, this does not preclude a specific actual project result from falling inside or outside of the bands shown in Figure 1 indicating the expected accuracy ranges.
DETERMINATION OF THE COST ESTIMATE CLASS

The cost estimator makes the determination of the estimate class based upon the maturity level of project definition based on the status of specific key planning and design deliverables. The percent design completion may be correlated with the status, but the percentage should not be used as the estimate class determinant. While the determination of the status (and hence the estimate class) is somewhat subjective, having standards for the design input data, completeness and quality of the design deliverables will serve to make the determination more objective.